Kinetic Isotope Effects in Proton-transfer Reactions

By J. R. Jones[†]

(Chemistry Department, University of British Columbia, Vancouver 8, Canada)

RECENT results for the base-catalysed exchange of some aromatic hydrocarbons in firstly¹ a medium of lithium cyclohexylamide in cyclohexylamine, and secondly,² dimethyl sulphoxide containing potassium butoxide as base, have indicated considerable discrepancies in the relative rates of proton exchange. Hofmann et al.² suggested that the difference was due to greater charge delocalisation in the more polar solvent, whilst Streitwieser¹ suggested that ionisation may not be the true ratedetermining step in the alkoxide-Me₂SO system. Further evidence³ in support of the latter viewpoint was apparently obtained when a k_D/k_T value of near unity resulted from the alkoxide-catalysed exchange of the methyl hydrogens of toluene, in sharp contrast to a $k_{\rm H}/k_{\rm D}$ value in excess of 10 when the reaction was catalysed by lithium cyclohexyl-amide in cyclohexylamine.⁴ The absence of an isotope effect during racemisation studies using the t-butoxide-Me₂SO system has also been observed.⁵ The object of the present Communication is to show that the two widely different isotope effect values are not inconsistent and that both may relate to the

† On leave of absence from University of Surrey, U.K.

same rate-determining ionisation mechanism. Also implicit in this statement is the fact that the use of Me_2SO -base media may be a means of determining transition-state structure.

For the ionisation of weak carbon acids in the presence of a base catalyst (B) it is convenient to use a linear three-centre model:—

$$AH + B^{-} \rightarrow [A \cdots H \cdots B]^{\ddagger} \rightarrow A^{-} + HB$$

Kinetic isotope effect theory⁶ points to the fact that when the force constant (F_{22}) of the bond AH is equal to the force constant (F_{11}) of the bond HB the isotope effect will be a maximum. This condition is likely to be so when $pK_A(HA) - pK_A(BH)$ is zero,⁷ and recently data has become available which seems to support this conclusion.^{7,8} Although no accurate value of the pK_A of toluene is available it seems as if a value of 40 would be approximately correct. Similarly whilst no data is available for cyclohexylamine a similar solvent would be ammonia where a pK_A at 25° of 35 has been suggested⁹ as compared to an experimentally obtained¹⁰ value of 36. On this basis a large isotope effect of 10, which included a small secondary contribution, is not unexpected.

In the case of the t-butoxide-Me₂SO system the high basicity of the medium is due to the ability of Me₂SO to decrease the solvation of the butoxide ion. In other words for measurements in the t-butoxide-t-butyl alcohol-Me2SO system the increase in the rate of ionisation as the concentration of Me,SO is increased is due to the increasing ease with which the desolvation of the butoxide ion occurs. Consequently although the basicity of the medium as represented by H_{-} is increasing, the position of the proton in the transition state remains substantially the same. This viewpoint is reflected in the results of a study¹¹ of the reaction of 2-arylethyl bromide with KOBut in ButOH-Me₂SO, where $k_{\rm H}/k_{\rm D}$ was found to remain constant within experimental error as the Me₂SO concentration increases, and also by unpublished results¹² of our own on the detritiation of acetophenone in OH--Me₂SO where a log k against H_{-} plot has a slope of +0.5 and is consistent with the known transition-state structure.13

Although no accurate pK_A values in Me₂SO are available, it can be assumed that any changes in going from aqueous media to Me₂SO would be similar for both PhCH₂⁻ and BuO⁻. If a value of

20 for pK_A of Bu^tOH is taken¹⁴ then $pK_A(HA)$ – $pK_A(HB) \sim 20$, and as the anion of toluene will be a far more powerful base than the butoxide ion, the proton in the transition state will be very near the latter, the situation being $[A^- \cdot \cdot \cdot H^+B^-]$. Consequently a low value of $k_{\rm H}/k_{\rm D}$ is to be expected, and if the condition $f^{+}_{+} > \frac{v^{+}_{+}_{HL}}{v^{+}_{+}_{DL}} f_{HA} f_{B}$ prevails, where v_{+HL}^{\dagger} and v_{+DL}^{\dagger} are the decomposition modes of the vibrational frequencies (in wave-numbers), then an inverse isotope effect will obtained.⁶

Approximate calculations¹⁵ of the magnitude of $k_{\rm H}/k_{\rm D}$ can be made by taking $M_{\rm B} = 17$, $M_{\rm H} = 1$, and $M_{\rm A} = 100$, and by assuming reasonable values of F_{11}/F_{22} , and a curvature parameter d, given by $F_{11}F_{22} - F_{12}^2$ of -0.1. Although no direct measurement of the F_{11}/F_{22} ratio can be made, in view of the transition state suggested it would be expected that $F_{11} \gg F_{22}$, and the greater the difference $pK_A(SH) - pK_A(HB)$ then the greater the ratio F_{11}/F_{22} would become. For values of F_{11}/F_{22} in excess of 10, the values of $k_{\rm H}/k_{\rm D}$ seem to show little change and for the case of $F_{11}/F_{22} = 10$ the resulting $k_{\rm H}/k_{\rm D}$ value is 2.0, leading to $k_{\rm D}/k_{\rm T}$ of near unity. Such a low value is therefore not incompatible with a rate-determining ionisation process.

(Received, May 31st, 1967; Com. 528.)

- ¹ A. Streitwieser, jun., and H. K. Koch, J. Amer. Chem. Soc., 1964, 86, 404.

- ² J. E. Hofmann, R. J. Muller, and A. Schriesheim, J. Amer. Chem. Soc., 1964, 85, 3002.
 ³ J. E. Hofmann, A. Schriesheim, and R. E. Nickols, Tetrahedron Letters, 1965, 1745.
 ⁴ A. Streitwieser, jun., W. C. Langworthy, and D. E. Van Sickle, J. Amer. Chem. Soc., 1962, 84, 251.
- ⁵ D. J. Cram, C. A. Kingsbury, and B. Rickborn, J. Amer. Chem. Soc., 1961, 83, 3688.
- ⁶ J. Bigeleisen and M. Wolfsberg, *Adv. Chem. Phys.*, 1958, **1**, 16. ⁷ R. P. Bell and D. M. Goodall, *Proc. Roy. Soc.*, 1966, *A*, **294**, 273.
- ⁸ J. L. Longridge and F. A. Long, J. Amer. Chem. Soc., 1967, 89, 1292.
 ⁹ R. P. Bell, "The Proton in Chemistry", Cornell University Press, New York, 1959, p. 88.
 ¹⁰ N. S. Wooding and W. C. F. Higginson, J. Chem. Soc., 1952, 774.
 ¹¹ A. F. Cockerill, S. Rottschaefer, and W. H. Saunders, jun., J. Amer. Chem. Soc., 1967, 89, 901.

- ¹² J. R. Jones and R. Stewart, to be published.
 ¹³ J. R. Jones, R. E. Marks, and S. C. Subba Rao, *Trans. Faraday Soc.*, 1967, 63, 111.
 ¹⁴ Ref. 9, p. 46.
 ¹⁵ A. V. Willi and M. Wolfsberg, *Chem. and Ind.*, 1964, 2097.